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1 The Kosterlitz-Thouless Phase Transition for

2D Superconductors

Last time we saw that the energy of a V/AV pair is signi�cantly lower than
that of an isolated vortex. The energy of a free vortex can be calculated by
ignoring the vortex core (GL κ → ∞) and considering only the kinetic energy
of the currents as,

W1 = πn∗s,2D
~2

m∗ ln R
r0
, where n∗s,2D = nsL is the 2D super�uid density, ns is

the 3D super�uid density, L is the length of the vortex (on the order of the
�lm thickness), r0 is the microscopic length scale where the current density ap-
proaches the de-pairing value (we expect r0 ∼ ξGL), and R is the sample size,
where it is assumed that λ⊥ is much greater than the sample size. The energy
of a single isolated vortex scales with the system size, making it very expensive!

Contrast this with the case of a V/AV pair at some distance r apart. Far
away (R >> r) the �ow �elds of the two vortices cancel to good approximation,
making the object appear �neutral� from far away. The currents are strong only
within r, giving rise to a total energy of just,

W2 = 2πn∗s,2D
~2

m∗ ln r
r0
.

Because W2 << W1 the V/AV excitations are the dominant excitations at low
temperature in the 2D superconductor.

To naively estimate the KT transition temperature TKT calculate the Helmholtz
free energy of a free vortex, ∆F1 and see where it changes sign. The entropy
comes from counting the number of microscopic con�gurations that give the
same macroscopic properties. In the case of a free vortex added to the sample,
the vortex could be located in any square of size a, where a is expected to be
on the order of r0. Thus the Helmholtz free energy can be written as,
∆F1 = W1 − kBT ln(R2/r2

0).
This can be expanded as,

∆F1 =
(
πn∗s,2D

~2

m∗ − 2kBT
)

ln R
r0
− 2kBT ln r0

a .

In the thermodynamic limit R→∞ only the �rst term survives.
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Looking at the temperature where ∆F1 = 0 yields this implicit equation for
TKT :
n∗s,2D(TKT ) = 2m∗kB

π~2 TKT . One can �nd TKT by �nding the intersection of

n∗s,2D(T ) and the line described by 2m∗kB
π~2 T . The class web site shows such data

from super�uid 4He and In/InOx superconducting �lms.

2 Highlights of KT Physics in 2D Superconduc-

tors

For temperatures above TKT one can de�ne a free-vortex correlation length

ξ+(T ) ∼ r0e

√
B

TKT
T−TKT , where B is a constant of order unity. This is a measure

of the puddle size of free-vortex-free regions. Note that this length scale diverges
as TKT is approached from above. One can use it to estimate the free vortex
density as nf (T ) = 1/ξ2

+(T ), for T > TKT . The free vortex density thus goes
to zero at TKT . The free vortices will dissipate energy when acted upon by an
external current, thus TKT can be found from the zero-resistance state of the
material, in principle.

When a transport current is applied to a bound V/AV pair, the Lorentz force
will act in opposite directions on each vortex and act to stretch the pair. This
gives rise to a peak in the energy of the V/AV pair as a function of separation r.
The V/AV pair can unbind due to a thermal �uctuation activating the system
over the barrier, creating free vortices below TKT . The free-vortex generation
rate is given by

G = G0e
−E0/kBT , where E0 = q2 ln

(
q2

r0Φ0j2D

)
, G0 is the attempt frequency,

q2(T ) =
2π~2n∗

s,2D(T )

m∗ , and j2D is the 2D surface current density. With these
de�nitions, the free vortex generation rate is,

G = G0

(
r0Φ0j2D

q2

)q2/kBT
.

But free vortices also can re-combine and annihilate. This recombination rate
is given by R = R0n

2
f , where nf is the free vortex density.

By assuming equilibrum and equating the generation and recombination rates,
we can calcualte the free vortex density as,

nf =
√

G0

R0

(
r0Φ0j2D

q2

)q2/2kBT
, for T < TKT in the presence of a current.

These free vortices will create a longitudinal electric �eld given by,

E ∼ j
a(T )
2D with a(T ) = 1 +

π~2n∗
s,2D(T )

m∗kBT
. This exponent has the value of 3 at

TKT , and a value of 1 above TKT (Ohmic dissipation due to free vortices). More

generally, the E − j2D relation can be written as E ∼ j
1+2

TKT
T

n∗
s,2D(T )

n∗
s,2D

(TKT )

2D . This
form shows that the exponent grows from a value of 3 for T < TKT . Thus the
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IV curves show a discontinuous jump in slope from 1 to 3 at TKT , followed by
a steady rise below that temperature. The large value of the exponent at low
temperature resembles a �nite critical current.

Along with this there is a discontinuous drop to zero in super�uid density
n∗s,2D at TKT .
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